Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 901: 166467, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-37611716

ABSTRACT

The prediction of algal blooms using traditional water quality indicators is expensive, labor-intensive, and time-consuming, making it challenging to meet the critical requirement of timely monitoring for prompt management. Using optical measures for forecasting algal blooms is a feasible and useful method to overcome these problems. This study explores the potential application of optical measures to enhance algal bloom prediction in terms of prediction accuracy and workload reduction, aided by machine learning (ML) models. Compared to absorption-derived parameters, commonly used fluorescence indices such as the fluorescence index (FI), humification index (HIX), biological index (BIX), and protein-like component improved the prediction accuracy. However, the prediction accuracy was decreased when all optical indices were considered for computation due to increased noise and uncertainty in the models. With the exception of chemical oxygen demand (COD), this study successfully replaced biochemical oxygen demand (BOD), dissolved organic carbon (DOC), and nutrients with selected fluorescence indices, demonstrating relatively analogous performance in either training or testing data, with consistent and good coefficient of determination (R2) values of approximately 0.85 and 0.74, respectively. Among all models considered, ensemble learning models consistently outperformed conventional regression models and artificial neural networks (ANNs). However, there was a trade-off between accuracy and computation efficiency among the ensemble learning models (i.e., Stacking and XGBoost) for algal bloom prediction. Our study offers a glimpse of the potential application of spectroscopic measures to improve accuracy and efficiency in algal bloom prediction, but further work should be carried out in other water bodies to further validate our proposed hypothesis.

2.
Nanomaterials (Basel) ; 13(9)2023 May 06.
Article in English | MEDLINE | ID: mdl-37177109

ABSTRACT

Hydrodechlorination (HDC) is a reaction that involves the use of hydrogen to cleave the C-Cl bond in chlorinated organic compounds such as chlorophenols and chlorobenzenes, thus reducing their toxicity. In this study, a palladium (Pd) catalyst, which is widely used for HDC due to its advantageous physical and chemical properties, was immobilized on alumina (Pd/Al) and graphene-based materials (graphene oxide and reduced graphene oxide; Pd/GO and Pd/rGO, respectively) to induce the HDC of 4-chlorophenol (4-CP). The effects of the catalyst dosage, initial 4-CP concentration, and pH on 4-CP removal were evaluated. We observed that 4-CP was removed very rapidly when the HDC reaction was induced by Pd/GO and Pd/rGO. The granulation of Pd/rGO using sand was also investigated as a way to facilitate the separation of the catalyst from the treated aqueous solution after use, which is to improve practicality and effectiveness of the use of Pd catalysts with graphene-based support materials in an HDC system. The granulated catalyst (Pd/rGOSC) was employed in a column to induce HDC in a continuous flow reaction, leading to the successful removal of most 4-CP after 48 h. The reaction mechanisms were also determined based on the oxidation state of Pd, which was observed using X-ray photoelectron spectroscopy. Based on the results as a whole, the proposed granulated catalyst has the potential to greatly enhance the practical applicability of HDC for water purification.

3.
Water Res ; 230: 119577, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36638735

ABSTRACT

Progress in heterogeneous advanced oxidation processes (AOPs) is hampered by several issues including mass transfer limitation, limited diffusion of short-lived reactive oxygen species (ROS), aggregation of nanocatalysts, and loss of nanocatalysts to treated water. These issues have been addressed in recent studies by executing the heterogeneous AOPs in confinement, especially in the nanopores of catalytic membranes. Under nanoconfinement (preferably at the length of less than 25 nm), the oxidant-nanocatalyst interaction, ROS-micropollutant interaction and diffusion of ROS have been observed to significantly improve, which results in enhanced ROS yield and mass transfer, improved reaction kinetics and reduced matrix effect as compared to conventional heterogenous AOP configuration. Given the significance of nanoconfinement effect, this study presents a critical review of the current status of membrane-based nanoconfined heterogeneous catalysis system for the first time. A succinct overview of the nanoconfinement concept in the context of membrane-based nanofluidic platforms is provided to elucidate the theoretical and experimental findings related to reaction kinetics, reaction mechanisms and molecule transport in membrane-based nanoconfined AOPs vs. conventional AOPs. In addition, strategies to construct membrane-based nanoconfined catalytic systems are explained along with conflicting arguments/opinions, which provides critical information on the viability of these strategies and future research directions. To show the desirability and applicability of membrane-based nanoconfined catalysis systems, performance governing factors including operating conditions and water matrix effect are particularly focused. Finally, this review presents a systematic account of the opportunities and technological constraints in the development of membrane-based nanoconfined catalytic platform to realize effective micropollutant elimination in water treatment.


Subject(s)
Water Pollutants, Chemical , Water Purification , Reactive Oxygen Species , Water Purification/methods , Oxidation-Reduction , Catalysis
4.
Polymers (Basel) ; 15(2)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36679150

ABSTRACT

The structured adsorption filter material is one of the ways to enhance the practical applicability of powdered adsorbents, which have limitations in the real water treatment process due to difficulty in the separation process. In this study, three-dimensional (3D) printing technology was applied to prepare filter materials for water treatment processes. A 3D-printed graphene-oxide (GO)-based adsorbent is prepared on a polylactic acid (PLA) scaffold. The surface of the PLA scaffold was modified by subjecting it to strong alkaline or organic solvent treatment to enhance GO doping for realizing effective adsorption of cationic dye solutions. When subjected to 95% acetone treatment, the structural properties of PLA changed, and particularly, two main hydrophilic functional groups (carboxylic acids and hydroxyls) were newly formed on the PLA through cleavage of the ester bond of the aliphatic polyester. Owing to these changes, the roughness of the PLA surface increased, and its tensile strength decreased. Meanwhile, its surface was doped mainly with GO, resulting in approximately 75% methylene blue (MB) adsorption on the 3D-printed GO-based PLA filter. Based on the established optimal pretreatment conditions, a kinetic MB sorption study and an isotherm study were conducted to evaluate the 3D-printed GO-based PLA filter. The pseudo-second-order model yielded the best fit, and the MB adsorption was better fitted to the Langmuir isotherm. These results suggested that chemical adsorption was the main driver of the reaction, and monolayer sorption occurred on the adsorbent surface. The results of this study highlight the importance of PLA surface modification in enhancing GO doping and achieving effective MB adsorption in aqueous solutions. Ultimately, this study highlights the potential of using 3D printing technology to fabricate the components required for implementing water treatment processes.

5.
Int J Mol Sci ; 23(20)2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36293080

ABSTRACT

The granulation of bismuth oxide (BO) by alginate (Alg) and the iodide adsorption efficacy of Alg-BO for different initial iodide concentrations and contact time values were examined. The optimal conditions for Alg-BO granulation were identified by controlling the weight ratio between Alg and BO. According to the batch iodide adsorption experiment, the Alg:BO weight ratio of 1:20 was appropriate, as it yielded a uniform spherical shape. According to iodide adsorption isotherm experiments and isotherm model fitting, the maximum sorption capacity (qm) was calculated to be 111.8 mg/g based on the Langmuir isotherm, and this value did not plateau even at an initial iodide concentration of 1000 mg/L. Furthermore, iodide adsorption by Alg-BO occurred as monolayer adsorption by the chemical interaction and precipitation between bismuth and iodide, followed by physical multilayer adsorption at a very high concentration of iodide in solution. The iodide adsorption over time was fitted using the intraparticle diffusion model. The results indicated that iodide adsorption was proceeded by boundary layer diffusion during 480 min and reached the plateau from 1440 min to 5760 min by intraparticle diffusion. According to the images obtained using cross-section scanning electron microscopy assisted by energy-dispersive spectroscopy, the adsorbed iodide interacted with the BO in Alg-BO through Bi-O-I complexation. This research shows that Alg-BO is a promising iodide adsorbent owing to its high adsorption capacity, stability, convenience, and ability to prevent secondary pollution.


Subject(s)
Alginates , Water Pollutants, Chemical , Alginates/chemistry , Bismuth , Water , Iodides , Water Pollutants, Chemical/chemistry , Kinetics , Adsorption , Hydrogen-Ion Concentration
6.
Chemosphere ; 306: 135557, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35780991

ABSTRACT

In this study, a dye pollutant (methyl orange, MO) was effectively oxidized in a hydroxylamine (HA)-assisted Fenton system using various Al/Si/Fe- and Fe-containing minerals. The fastest degradation kinetics of MO were observed in the olivine-HA Fenton system, whereas other Al/Si/Fe and Fe-rich minerals (magnetite and lepidocrocite) demonstrated much slower degradation kinetics. The degradation rate constants were proportional to dissolved Fe(II) quantities in mineral suspensions (R2 = 0.98), indicating the crucial role of dissolved Fe(II) quantity in HA-assisted Fenton reactions. Radical scavenging and electron spin resonance results revealed that MO was dominantly oxidized by ·HO produced in the olivine-HA Fenton system. The continuous production of aqueous Fe(II) via direct Fe(II) dissolution at a pH of 3 and further Fe dissolution from the reductive dissolution of surface Fe(III) by HA was the main driving force for efficient MO degradation. Furthermore, lowering the pH by the addition of hydroxylamine hydrochloride resulted in the effective removal of MO under various pH conditions (3-9), indicating the additional advantage of HA use in Fenton reactions. Liquid chromatography-mass spectroscopy analysis revealed that the cleavage of C-N and C-C bonds, demethylation, hydroxylation, and dehydroxylation were the main processes for MO oxidation in the olivine-HA Fenton system.


Subject(s)
Environmental Pollutants , Ferric Compounds , Ferric Compounds/chemistry , Ferrous Compounds/chemistry , Hydrogen Peroxide/chemistry , Hydroxylamine/chemistry , Hydroxylamines , Iron/chemistry , Iron Compounds , Magnesium Compounds , Minerals/chemistry , Oxidation-Reduction , Oxidative Stress , Silicates , Solubility
7.
Nanomaterials (Basel) ; 12(8)2022 Apr 18.
Article in English | MEDLINE | ID: mdl-35458092

ABSTRACT

Herein, magnesium/aluminum-layered double hydroxide (MgAl-LDH) and bentonite (BT) nanocomposites (LDH-BT) were prepared by co-precipitation (CP), exfoliation-reassembly (ER), and simple solid-phase hybridization (SP). The prepared LDH-BT nanocomposites were preliminarily characterized by using powder X-ray diffractometry, scanning electron microscopy, and zeta-potentiometry. The chromate adsorption efficacies of the pristine materials (LDH and bentonite) and the as-prepared nanocomposites were investigated. Among the composites, the LDH-BT_SP was found to exhibit the highest chromate removal efficiency of 65.7%. The effect of varying the LDH amount in the LDH-BT composite was further investigated, and a positive relationship between the LDH ratio and chromate removal efficiency was identified. The chromate adsorption by the LDH-BT_SP was performed under various concentrations (isotherm) and contact times (kinetic). The results of the isotherm experiments were well fitted with the Langmuir and Freundlich isotherm model and demonstrate multilayer chromate adsorption by the heterogeneous LDH-BT_SP, with a homogenous distribution of LDH nanoparticles. The mobility of the as-prepared LDH-BT_SP was investigated on a silica sand-filled column to demonstrate that the mobility of the bentonite is dramatically decreased after hybridization with LDH. Furthermore, when the LDH-BT_SP was injected into a box container filled with silica sand to simulate subsurface soil conditions, the chromate removal efficacy was around 43% in 170 min. Thus, it was confirmed that the LDH-BT prepared by solid-phase hybridization is a practical clay-based nanocomposite for in situ soil and groundwater remediation.

8.
Nanomaterials (Basel) ; 11(9)2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34578608

ABSTRACT

This study presents a strategy to remove tetracycline by using magnetite-activated persulfate. Magnetite (Fe3O4) was synthesized at high purity levels-as established via X-ray diffractometry, transmission electron microscopy, and N2 sorption analyses-and tetracycline was degraded within 60 min in the presence of both magnetite and persulfate (K2S2O8), while the use of either substance yielded limited degradation efficiency. The effects of magnetite and persulfate dosage, the initial concentration of tetracycline, and the initial pH on the oxidative degradation of tetracycline were interrogated. The results demonstrate that the efficiency of tetracycline removal increased in line with magnetite and persulfate dosage. However, the reaction rate increased only when increasing the magnetite dosage, not the persulfate dosage. This finding indicates that magnetite serves as a catalyst in converting persulfate species into sulfate radicals. Acidic conditions were favorable for tetracycline degradation. Moreover, the effects of using a water matrix were investigated by using wastewater treatment plant effluent. Comparably lower removal efficiencies were obtained in the effluent than in ultrapure water, most likely due to competitive reactions among the organic and inorganic species in the effluent. Increased concentrations of persulfate also enhanced removal efficiency in the effluent. The tetracycline degradation pathway through the magnetite/persulfate system was identified by using a liquid chromatograph-tandem mass spectrometer. Overall, this study demonstrates that heterogeneous Fenton reactions when using a mixture of magnetite and persulfate have a high potential to control micropollutants in wastewater.

9.
Nanomaterials (Basel) ; 11(2)2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33546398

ABSTRACT

A volatile organic compound adsorbent based on a porous clay heterostructure (PCH) with alginate biopolymer was successfully prepared. From N2 adsorption-desorption analysis, the specific surface area, pore volume, and pore size of bentonite were dramatically increased after introducing the porous structure. Following complexation with alginate (Alg-PCH), the pore volume and pore size were not significantly affected by pore structure. The thermal stability of Alg-PCH shows enhanced thermal stability compared to alginate and alginate beads. The morphology layered structure of Alg-PCH was carried out by transmission electron microscopy (TEM), suggesting the disorder and re-order of the c-axis layer stacking by porous structure and complexation with alginate, respectively, which was well-matched with X-ray diffraction results. To optimize the preparation of Alg-PCH, various reaction conditions (alginate, CaCl2 concentration, bead size, and weight ratio between alginate and PCH) were utilized. According to the toluene adsorption-desorption experiments, the preparation conditions for Alg-PCH were selected as a 2 mm extrusion tip, 0.5% of alginate, and 2% of CaCl2 solution with a 1:50 alginate:PCH weight ratio. Additionally, it shows 61.63 mg/g adsorption capacity with around 49% desorption efficacy under atmospheric temperature and pressure.

10.
Environ Technol ; 42(14): 2132-2144, 2021 Jun.
Article in English | MEDLINE | ID: mdl-31725366

ABSTRACT

Although filtration devices are already widely used for stormwater runoff treatment, there are much to be improved to ensure the required performance. Additionally, the performance of a device should be verified before on-site installation. In this context, an upflow filtration system using novel high porosity floating fibrous media formed into spherical shape was proposed and evaluated for solid capture and backwashing. At filtration velocities of 20-40 m/h, the maximum head loss was about 2 cm even under a solid load of 30 kg/m2, and suspended solid (SS) removal efficiency was >96% throughout 300 min. A considerable amount of SS was removed in the pretreatment chamber, so the load on the media was reduced. Several models were tried to describe the solid capture in the media. The coefficients of solid attachment/detachment showed good correlations with filtration velocity. Other parameters indicated a variation of solid capture and permeability, which is unique to the media in this study. The backwashing with air and water for 1-2 min each showed good head loss recovery under the SS load up to 550-600 kg/m2, and the SS discharge was more efficient when the stagnant water was drained before water backwashing. The results in this study suggest the high potential of the combination of fibrous media and upflow filtration system for the efficient control of the nonpoint source pollutants in stormwater runoff.


Subject(s)
Waste Disposal, Fluid , Water Purification , Filtration , Rain
11.
J Hazard Mater ; 409: 124415, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33183840

ABSTRACT

We developed a Cu/Cu2O-immobilized filter-type adsorbent for efficient iodide anion removal. A cellulose filter (CF) was used as a support, and its surface was modified using acrylic acid to enhance copper immobilization. The modified filter (CF-AA) exhibited 10x higher copper adsorption than the unmodified filter. Cu/Cu2O was prepared on CF-AA by using a simple hydrothermal method to obtain CF-AA-Cu, and the prepared Cu/Cu2O was characterized with scanning electron microscopy/energy-dispersive spectroscopy, x-ray photoelectron spectroscopy, and thermogravimetric analysis. While CF and Cu2O themselves exhibited limited iodide adsorption performance, CF-AA-Cu exhibited fast adsorption kinetics with a half-life of 60 min as well as a high adsorption capacity of 10.32 mg/g, as obtained using the Langmuir adsorption isotherm model. Moreover, it exhibited high selectivity for iodide when high concentrations of other anions were present. The adsorption mechanism was proved by means of material characterization before and after adsorption. The coexistence of Cu0, Cu+, and Cu2+ in CF-AA-Cu make it effective in broader pH conditions via the redox reaction between Cu0 and Cu2+. Overall, iodide adsorbents in the form of filters with high adsorption capacity, selectivity, and ability over a wide pH range are potentially useful for removing iodide from water.

12.
J Hazard Mater ; 399: 123060, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32937714

ABSTRACT

Heavy metal pollution caused by stormwater runoff has triggered a demand for effective heavy metal sorbents. Effective heavy metal removal using conventional stormwater runoff treatment processes that employ filtration mechanisms as primary removal mechanisms is difficult. Therefore, we attempt to improve cadmium removal performance by attaching disulfide polymer (DiS-COP) containing soft bases, thiols, onto the surface of polypropylene/polyethylene (PP/PE) fiber media, which is widely used for stormwater runoff treatment. Material characterization demonstrated that DiS-COP was successfully grafted and grown on the surface of PP/PE (Dis-PP/PE). The batch and continuous flow adsorption capacities of Dis-PP/PE were 81.1 mg/g and 2.33 mg/g, respectively, which is 40 times higher than those of pristine PP/PE. Applicability of DiS-PP/PE at pH 6-8 was demonstrated, and effects of calcium and humic acid on cadmium adsorption were investigated. Calcium marginally affected cadmium adsorption, which can be explained using the Hard and soft (Lewis) acids and bases theory (HSAB), but cadmium removal efficiency decreased owing to humic acid (HA)-Cd complex formation and agglomeration in the presence of organic material. In a breakthrough test, the adsorption column exhibited complete cadmium uptake over 24 h until it reached the breakthrough point. Therefore, heavy metal adsorption performance of PP/PE was successfully enhanced by grafting DiS-COP on its surface.

13.
Article in English | MEDLINE | ID: mdl-32486395

ABSTRACT

This study was conducted to develop and validate a more reliable total organic carbon (TOC) analytical procedure for water samples containing suspended solids (SS). The effects of the combined ultrasonic and alkaline pretreatment (CULA) on the TOC measurement were studied in water samples containing SS from three origins (algae, sewage particles, and soil) under different analytical conditions (SS concentration, oxidation methods, and sieve size). The applicability of turbidity as a homogeneity index was also evaluated. With CULA, TOC recovery remained high (> 80%) for SS concentration ranges up to four times larger than ultrasonic pretreatment alone (UL) due to enhanced particulate organic carbon (POC) solubilization, and did not significantly differ depending on the oxidation methods, at low SS concentrations, or with varying sieve sizes. In particular, the turbidity change rate (i.e., NTU5/NTU0) of the pretreated water sample showed a high correlation with TOC precision (r2 = 0.73, p < 0.01), which suggests that turbidity can be used as an indicator of sample homogeneity. A novel TOC analytical procedure is expected to be useful for more accurate assessments of the impact of particulate pollutants on water quality than current methods, and for the analysis of the carbon cycle, including POCs, in the environment.


Subject(s)
Carbon , Sewage , Water Pollutants , Carbon/analysis , Carbon Cycle , Ultrasonics , Water Pollutants/analysis
14.
Sci Rep ; 9(1): 16334, 2019 11 08.
Article in English | MEDLINE | ID: mdl-31705006

ABSTRACT

In this study, a hydrogel impregnated with powder activated carbon (PAC), MAA-PAC, was synthesized through the polymerization of acrylic acid (AA) and PB was immobilized using the carboxyl group of AA. In this process, an adsorbent with an enhancement of PB content and stability of immobilization was developed through the additional supply of Fe3+ ions by the layer by layer (LBL) assembly. XRD, FT-IR, SEM (EDS), TEM (EDS, mapping), and TG analyzes of the LBL and non-LBL groups were performed to confirm the change of PB content in the adsorbent as the LBL assembly was applied. The stability of PB immobilization was confirmed during the washing process after the synthesis of the adsorbent. When the LBL assembly process was applied as a PB immobilization strategy, the PB content in the adsorbent was improved and PB leakage was not observed during the washing process. The maximum adsorption (qm) for cesium in the MAA-PAC-PB LBL group that showed high PB content was 40.03 mg/g, and the adsorption isotherm was more suitable for the Langmuir model than the Freundlich model. The LBL group showed a high removal efficiency of 99.81% and a high DF value (525.88) for radioactive cesium (120 Bq/g). These results demonstrate the potential efficiency of the MAA-PAC-PB LBL group for the decontamination of radioactive cesium-contaminated water systems. Furthermore, it was verified that the LBL group of MAA-PAC-PB could be used as an adsorbent without an additional design of the existing water treatment facility. This can an economical decontamination method for removing radioactive cesium.

15.
J Hazard Mater ; 374: 309-318, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31022631

ABSTRACT

In this study, we synthesized four zeolites (i.e., Zeolite-X&A9, -X&A&HS12, -X&HS15, -X&HS18) from coal fly ash (CFA), and evaluated their potential for use as support materials to fabricate novel Pd-Sn bimetallic catalysts for reactive and selective reduction of NO3- to N2. The successive transformation of zeolite (Na-A and Na-X to hydroxy sodalite (HS)) was observed with increasing crystallization time from 9 to 18 h, which resulted in different degrees of crystallinity, morphology, BET surface area, and pore volume. Compared to other monometallic and bimetallic catalysts, Pd-Sn/Zeolite-X&HS15 (crystallization time = 15 h) showed remarkable nitrate removal (100%) with the highest kinetic rate constant (k = 0.055 min-1, K' = 0.219 min-1 gcat-1, K'' = 2.922 L min-1 gPd-1) and N2 selectivity (88.1%). These results can be attributed to high surface area and stability of each of the zeolite phases (i.e., Na-X and HS). The reaction mechanism was elucidated by Energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy analyses, demonstrating the presence of Pd°, Sn°, and Sn2+ and the uniform distribution of proximate Pd-Sn ensembles on the surface. These results suggest new promising strategies for applying industrial solid waste-derived zeolites to the synthesis of novel bimetallic catalysts to ensure efficient and economical denitrification of wastewater.

16.
Chemosphere ; 226: 173-182, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30927669

ABSTRACT

Prussian blue (PB) is known to be an effective cesium adsorbent, but the direct application of PB is limited by the difficulty of its recovery from solution. In this study, PB was immobilized on a porous support media, poly(vinyl alcohol) (PVA) sponge, for use as a selective material for cesium adsorption. The commercially available PVA sponge was functionalized by the addition of poly(acrylic acid) (PAA) (i.e., PAA-PVA) to enhance the PB immobilization, which increased both PB loading and binding strength. The AA functionalization changed the major functional groups from hydroxyl to carboxylic, as confirmed by Fourier-transform infrared spectroscopy. PB was further synthesized in the PAA-PVA using layer-by-layer (LBL) assembly, which contributed to more stable PB formation, and reduced detachment of PB during washing. The prepared adsorbent, PAA-L@PVA-PB, was tested for cesium adsorption capability. Cesium adsorption was equilibrated within three hours, and the maximum cesium adsorption capacity was 4.082 mg/g, which was 5.7 times higher than Pure-L@PVA-PB. The observed decrease in solution pH during cesium adsorption inhibited overall cesium uptake, however, this was minimized by buffering. The prepared PAA-L@PVA-PB was used as a column filling material and its potential use as a countermeasure for removing radioactive cesium from a contaminated water stream was demonstrated.


Subject(s)
Acrylates/chemistry , Cesium/isolation & purification , Ferrocyanides/chemistry , Polyvinyl Alcohol/chemistry , Water Purification/methods , Adsorption , Cesium/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification
17.
Sci Total Environ ; 670: 779-788, 2019 Jun 20.
Article in English | MEDLINE | ID: mdl-30921711

ABSTRACT

Cesium is a typical radioisotope that has a long half-life and is dangerous and can be emitted in the event of a nuclear accident. Prussian blue (PB), which is known to effectively adsorb cesium, is difficult to separate when it is dissolved in an aqueous system. In this study, PB was immobilized on a filter type support media, cellulose filter (CF), for use as a selective material for cesium adsorption. The commercially available CF was functionalized by the addition of acrylic acid (AA) (i.e., CF-AA) to enhance the PB immobilization, which increased both PB loading and binding strength. The AA functionalization changed the major functional groups from hydroxyl to carboxylic, as confirmed by Fourier-transform infrared spectroscopy. As a result of the surface modification, the PB immobilization increased 1.5 times and reduced detachment of PB during washing. The prepared adsorbent, CF-AA-PB, was tested for its cesium adsorption capability. Cesium adsorption equilibrated within 3 h, and the maximum cesium adsorption capacity was 16.66 mg/g. The observed decrease in the solution pH during cesium adsorption inhibited the overall cesium uptake; however, this was minimized by buffering. The prepared CF-AA-PB was used as a filter material and its potential use as a countermeasure for removing radioactive cesium from a contaminated water stream was demonstrated.

18.
J Microbiol Biotechnol ; 29(2): 283-291, 2019 Feb 28.
Article in English | MEDLINE | ID: mdl-30544287

ABSTRACT

Fermentation of food waste in the presence of different concentrations of salt (Na+) and ammonia was conducted to investigate the interrelation of Na+ and ammonia content in biohydrogen production. Analysis of the experimental results showed that peak hydrogen production differed according to the ammonia and Na+ concentration. The peak hydrogen production levels achieved were (97.60, 91.94, and 49.31) ml/g COD at (291.41, 768.75, and 1,037.89) mg-N/L of ammonia and (600, 1,000, and 4,000) mg-Na+/L of salt concentration, respectively. At peak hydrogen production, the ammonia concentration increased along with increasing salt concentration in the medium. This means that for peak hydrogen production, the C/N ratio decreased with increasing salt content in the medium. The butyrate/acetate (B/A) ratio was higher in proportion to the bio-hydrogen production (r-square: 0.71, p-value: 0.0006). Different concentrations of Na+ and ammonia in the medium also produced diverse microbial communities. Klebsiella sp., Enterobacter sp., and Clostridium sp. were predominant with high bio-hydrogen production, while Lactococcus sp. was found with low bio-hydrogen production.


Subject(s)
Hydrogen/metabolism , Nitrogen/chemistry , Sewage/chemistry , Sodium Chloride/chemistry , Acetates/chemistry , Ammonia/chemistry , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bioreactors , Butyrates/chemistry , Fatty Acids, Volatile/chemistry , Fermentation , Microbiota , Sewage/microbiology
19.
J Hazard Mater ; 332: 140-148, 2017 Jun 15.
Article in English | MEDLINE | ID: mdl-28285107

ABSTRACT

Heavy metal contaminated surface water is one of the oldest pollution problems, which is critical to ecosystems and human health. We devised disulfide linked polymer networks and employed as a sorbent for removing heavy metal ions from contaminated water. Although the polymer network material has a moderate surface area, it demonstrated cadmium removal efficiency equivalent to highly porous activated carbon while it showed 16 times faster sorption kinetics compared to activated carbon, owing to the high affinity of cadmium towards disulfide and thiol functionality in the polymer network. The metal sorption mechanism on polymer network was studied by sorption kinetics, effect of pH, and metal complexation. We observed that the metal ions-copper, cadmium, and zinc showed high binding affinity in polymer network, even in the presence of competing cations like calcium in water.

20.
Biotechnol Bioeng ; 113(1): 101-11, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25925200

ABSTRACT

This work investigated the formation of microbial granules to boost the productivity of lactic acid (LA). The flocculated form of LA-producing microbial consortium, dominated by Lactobacillus sp. (91.5% of total sequence), was initially obtained in a continuous stirred-tank reactor (CSTR), which was fed with 2% glucose and operated at a hydraulic retention time (HRT) of 12 h and pH 5.0 ± 0.1 under a thermophilic condition (50°C). The mixed liquor in the CSTR was then transferred to an up-flow anaerobic sludge blanket reactor (UASB). The fermentation performance and granulation process were monitored with a gradual decrease of HRT from 8.0 to 0.17 h, corresponding to an increase in the substrate loading from 60 to 2,880 g glucose L(-1) d(-1) . As the operation continued, the accumulation of biomass in the UASB was clearly observed, which changed from flocculent to granular form with decrease in HRT. Up to the HRT decrease to 0.5 h, the LA concentration was maintained at 19-20 g L(-1) with over 90% of substrate removal efficiency. However, further decrease of HRT resulted in a decrease of LA concentration with increase in residual glucose. Nevertheless, the volumetric LA productivity continuously increased, reaching 67 g L-fermenter (-1) h(-1) at HRT 0.17 h. The size of LA-producing granules and hydrophobicity gradually increased with decrease in HRT, reaching 6.0 mm and 60%, respectively. These biogranules were also found to have high settling velocities and low porosities, ranging 2.69-4.73 cm s(-1) and 0.39-0.92, respectively.


Subject(s)
Flocculation , Lactic Acid/metabolism , Lactobacillus/metabolism , Microbial Consortia , Anaerobiosis , Biomass , Bioreactors/microbiology , Glucose/metabolism , Hydrogen-Ion Concentration , Lactobacillus/growth & development , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...